
Copyright©2013,kaikeba.com

All Rights Reserved

——异常和保护

主讲教师：耿宇航

编程入门基础

如何处理异样的情况？

Copyright©2013,kaikeba.com, All Rights Reserved

• 编程的关键在于“防患于未然”

• 我们必须在代码中，事先预料出所有可能的情况，机
器在执行中才能“稳健”

• 机器本身并没有任何智能，所有的看起来的“智能”
现象，都是程序员事先就精心编写好的。

意外情况的处理思路

Copyright©2013,kaikeba.com, All Rights Reserved

• 传统方式

– 用if语句进行判断，并作相应的个理

• 现代的方式

– 抛现异常，捕获异常的机制

if 判断法

Copyright©2013,kaikeba.com, All Rights Reserved

• 一直沿用至今，十分普遍，行之有效

String s = “abdcd”;

int n = s.indexOf(“+”);

if(n<0){

 // 处理意外情况…

}

String s1 = s.substring(0,n);

被谁调用?

Copyright©2013,kaikeba.com, All Rights Reserved

• a方法为什么会执行?
– 因为b方法调用了它

• b方法为什么会执行?
– 因为c方法调用了它

• c方法为什么会执行?
– 因为d方法调用了它

• 到底谁是第一个执行的方法?
– main() ??

– 虚拟机方法

调用栈

Copyright©2013,kaikeba.com, All Rights Reserved

a方法

b方法

c方法

d方法

main方法

虚拟机方法

表示调用

表示返回

控制异常的新方法

Copyright©2013,kaikeba.com, All Rights Reserved

• 分析

– 发现异常的人可能不知道该如何处置异常

– 有能力处理异常的人不想陷入异常产生的细节代码

• 目标

– 把异常的发现和处理相分离

分工

Copyright©2013,kaikeba.com, All Rights Reserved

• 人类社会发展的过程，就是一个生产不断社会化的过
程。

– 分工越来越细，专门的人做专门的事

• 程序语言的设计也模仿了人类社会的成功经验。

– 设计与编码的分离

– 功能和实现的分离

– 错误的发现与控制的分离

异常语法

Copyright©2013,kaikeba.com, All Rights Reserved

try{

 语句;

 调用方法();

 …

}

catch(异常类型 e){

 处理异常

}

catch(异常类型 e){

 处理异常

}

try{ } 块表示受到监控的代

码。其中一但发生情况，就
会按照是哪种情况，跳到
catch块中执行

e 是产生的异常对象

的名字。每个异常发
生的时候，都会有对
应的异常对象。它记
录了异常的详细信息

抛出异常

Copyright©2013,kaikeba.com, All Rights Reserved

• 方法在进行工作的时候，可以抛出异常，好比“报警”

• 报警后，手头的工作立即停止

• 如果没人理会这个异常，调用它的所有方法的剩余工
作，也会立即停止

• 直到撞上了catch，此次事件才平息

异常机制的作用

Copyright©2013,kaikeba.com, All Rights Reserved

• 异常是流程转移的有效手段

• 异常使发现错误的人不再尴尬

– 他不需要处理这个事件

• 异常的代码从在量的if中解救出来

break, return, 异常的比较

Copyright©2013,kaikeba.com, All Rights Reserved

 循环

break

 循环

 循环

return

异常

异常的执行流程

Copyright©2013,kaikeba.com, All Rights Reserved

try

{

 1.

 2.

 调用

 3.

}

catch(Exception e)

{

 4

}

 5

{

 11

 12

 13

}

正常顺序：

1,2,11,12,13,

3,5

异常顺序：

1,2,11, 4, 5

注意

Copyright©2013,kaikeba.com, All Rights Reserved

• catch中只抓住它所对应的try块中产生的异常

• 异常一经捕获，就消失了，后续的代码，正常执行

异常的分类

Copyright©2013,kaikeba.com, All Rights Reserved

Throwable

Exception Error

RuntimeException

越界，转换问题，除
法错误，空指针等

内存错误，
栈溢出等

RuntimeException IOException

异常类型的差别

Copyright©2013,kaikeba.com, All Rights Reserved

• Exception类型

– 可以被catch住

• Error

– 不可恢复的“灾难”，不必料理后事

• RuntimeException

– 可以被cath，但不强迫处理

try..finally

Copyright©2013,kaikeba.com, All Rights Reserved

• catch的目的

– 抓住出现的异常情况，使工作维持正轨

• finally的目的

– 有某些事情，相当重要，即便是发生了异常，也不应该被跳
过

– 比如：还债

finally到底用在哪？

Copyright©2013,kaikeba.com, All Rights Reserved

• 宋丹丹的失误

try {

 开冰箱门

 装入大象

 关冰箱门

}

catch {

 修理大象

}

开冰箱门

装入大象

关冰箱门

可能
会出
问题

出现问题后,就忘
记关冰箱门了吧?

完美的方案

Copyright©2013,kaikeba.com, All Rights Reserved

打开冰箱门

try

{

 装入大象

}

finally

{

 关闭冰箱门

}

打开冰箱门

try

{

 装入大象

}

catch(…)

{

 修理大象

}

finally

{

 关闭冰箱门

}

注意

Copyright©2013,kaikeba.com, All Rights Reserved

• try..catch，try..finally是两套互无关系的机构，可以
相互嵌套

• try..finally..catch只是一种省略的写法。

注意

Copyright©2013,kaikeba.com, All Rights Reserved

• 经典的错误

try

{

 打开冰箱门

 装入大象

}

finally

{

 关闭冰箱门

}

如果,打开冰箱门时,

出现异外情况,会错误

地执行”关闭冰箱门”
的动作

考考你

Copyright©2013,kaikeba.com, All Rights Reserved

请分别说出正常与异常执行的流程

1…

try{

 2…

 3…

 4…

}

finally{

 5…

}

 6…

正常时: 1,2,3,4,5,6

1..发生异常时: 1

3..发生异常时: 1,2,3,5

韩信点兵问题

Copyright©2013,kaikeba.com, All Rights Reserved

• 韩信知道部队人数大约1000多，具体数字
不详。

• 使用如下办法

– 5人一组 余 1

– 7人一组 余 2

– 8人一组 余 3

• 考虑所有可能的人数 1000 - 2000

Copyright©2013,kaikeba.com, All Rights Reserved

谢 谢 !

